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SUMMARY

In this paper we use mathematical modelling to consider the broad advantages and disadvantages of
fertility control over lethal control for bovine tuberculosis in badger populations.

We use a deliberately simple model, attempting to capture only the key transmission processes.
The model is parametrized with reference to the long-term Woodchester Park study. Estimates of
mortality rate from this study suggest no significant extra mortality risk for animals with evidence of
infection as indicated by the presence of anti-Mycobacterium bovis antibodies or M. bovis isolation.

We find that large reductions in prevalence are sometimes the consequence of only moderate
reductions in population numbers. If we assume that the act of control does not in itself affect
transmission rates, then as far as eradication is concerned, both fertility control and mortality control
operate through the same epidemiological mechanism, the removal of susceptibles: if one is in principle
capable of keeping a population low enough to be infection free then so is the other. It is necessary
to continue either form of control at regular intervals to maintain a constant level of infection in
the long term. If control were to be stopped, return to precontrol levels of badger population and
infection prevalence would be expected within a few years. Fertility control is less effective in reducing
population density than lethal control since it can only act, at maximum, to remove one age cohort
per year. It is also less effective in reducing transmission as it can only ever remove susceptibles, while
lethal control also removes infectious badgers.

However, if the social disturbance caused by lethal control does in fact increase contact rates for
the remaining infectious badgers, the relative efficacies of the two strategies become a great deal less
clear. While we have no quantitative data on the extent to which social perturbation does act to
promote transmission, model simulations show that it is possible to develop plausible scenarios in
which the lethal control may actually act to increase the absolute numbers of animals infected, while
reducing the number of uninfected animals to very low numbers.

1. INTRODUCTION

The control of bovine tuberculosis, Mycobacterium
bovis (Tb), in badger (Meles meles) populations re-
mains controversial. In the quarter century since bad-

gers were identified as a potential reservoir for bovine
tuberculosis (Muirhead et al. 1974), several different
strategies for decreasing the risk of transmission to
cattle have been instigated which have been aimed at
reducing the levels of infection within badger popu-
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620 J. Swinton and others Control of Tb in badgers

lations. The choice of, and indeed the necessity for,
such control strategies has at times been hotly de-
bated but it is clear from the number of herd break-
downs considered to have a badger origin (MAFF
1995) that none has completely succeeded in elimi-
nating the risk of transmission from badgers to cattle
over large areas. This failure has had significant eco-
nomic, ethical and conservation implications which
make the continuing search for an effective and hu-
mane control strategy an urgent one (Dunnet et al.
1986; Tuyttens et al. 1995; White & Harris 1995a).
This paper is restricted to examining the epidemi-
ological consequences in badger populations of two
alternative strategies; we do not discuss the impact,
if any, on the frequency of herd breakdowns in cat-
tle and neither do we comment on the ethical fac-
tors which also need to be taken into account in the
choice of strategy (Tuyttens et al. 1995). The natural
history of bovine tuberculosis in badgers and other
mammals has been recently reviewed by O’Reilly &
Daborn (1995).

There are three broad classes of control strategies
currently being considered: those based on killing an-
imals; those based on vaccinating animals; and those
based on manipulating their fertility. All current and
previous strategies have centred on killing badgers;
a concise summary of how they differ has been given
by White & Harris (1995a). Vaccination strategies
remain theoretical at present since no vaccine candi-
date has yet been shown to be protective (although a
field trial is currently underway in Ireland (McCarthy
1993)) and is considered no further here. Finally, fer-
tility control has been mooted as an approach to pop-
ulation control (Bomford 1990). Its potential advan-
tages are both ethical and biological; we consider here
the latter in particular, in the light of the social per-
turbation and possible enhanced transmission caused
by lethal control.

2. DATA

Until the development of an ELISA for M. bo-
vis, assessments of infection or infectivity status in
live animals were based only on the ability to cul-
ture the pathogen from urine, faeces or clinical sam-
ples. Based on these mycobacterial culture results,
animals are known to switch from positive to nega-
tive results over time, even when subsequently found
to have Tb lesions at post mortem (Clifton-Hadley
et al. 1993). The relationship of results using ELISA
to infectivity remains untested; but the possibility of
switching suggests that shedding of bacillus may be
an intermittent event (Clifton-Hadley et al. 1993).
The ELISA test is diagnostic for the presence of an-
tibody against the M. bovis organism (Goodger et
al. 1994). It has a high specificity (94.3%) but a low
sensitivity (40.7%) (Clifton-Hadley et al. 1995), so
that population surveys based on this test alone are
likely to underestimate the number of animals who
have ever been infected with M. bovis.

We assume in this paper that there is no relation-
ship between infectivity and time since infection; at

any given time an infected animal may, with a certain
probability, be infectious. If this is so, the number of
infectious animals in the population is proportional
to the number of animals in the population ever in-
fected. Then we could take the number of infectious
animals in the population to be the number who have
ever been ELISA positive, multiplied by a constant
factor of approximately 1/0.4 to correct for the low
sensitivity of the test, multiplied by a constant but
completely unknown factor to correct for the inter-
mittency of infectiousness in an infected animal. In
modelling terms this makes no difference, for these
unknown factors are further multiplied by the equally
unknown contact rate between susceptible and in-
fected animals, and the product is then estimated
directly from the data. In this paper, we count as in-
fected any animal which has ever been either ELISA
or culture positive. We refer to this state as positiv-
ity and we take prevalence to be the prevalence of
positive animals.

For the past 20 years, MAFF has funded a study
of a badger population in and around Woodchester
Park, part of the Cotswold escarpment in Glouces-
tershire, south-west England, which has produced an
invaluable and unique dataset for the epidemiological
study of tuberculosis in badgers. Details of the study
site and of badger population dynamics have been
given elsewhere (Cheeseman et al. 1985, 1993) and
much of our understanding of the transmission pro-
cesses involved has emerged from this study (Cheese-
man et al. 1985, 1988; Clifton-Hadley et al. 1993).
One area of the study (referred to here as area 1),
had one social group removed in 1977, but has oth-
erwise not been the subject of any badger control op-
erations in the lifetime of the study. Two other areas
(area 2 and area 3) were the subject of badger control
operations in 1978 and 1979, respectively. For more
details of these areas, see Cheeseman et al. (1993).
For the estimation of epidemiological parameters we
restrict ourselves to the data from area 1, assumed
to be closer to an equilibrium level than the other
areas. For estimation of birth rates in populations of
different sizes, we pool the data from all three areas.

The data used to parametrize our model are given
in tables 1–4, taken from the Woodchester Park
study. We have combined males and females and
restrict attention to known-age animals within the
undisturbed study area. Animals are assumed to be
infectious, with some low transmission rate reflect-
ing the intermittency of infectivity, from the time at
which they are first found to be either ELISA or cul-
ture positive until death. While this has the advan-
tages of consistency, it also has the effect of smooth-
ing over short-term changes in infection dynamics. In
particular, it will not reflect any short-term periodic
dynamics over periods of less than about the mean
lifespan.

3. MODELLING APPROACH

In this paper we address the question of fertility
control with the aid of a mathematical model. It is
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Table 1. Total number of known-age animals present in area 1 of the Woodchester Park study area described in the
text, at the start of each year by age and year of birth
(Each horizontal row represents the number of animals surviving from a single yearly cohort.)

age in years︷ ︸︸ ︷
birth year 0 1 2 3 4 5 6 7 8 9 10 11 12

1977 27 10 4 2 2 0 0 0 0 0 0 0 0
1978 29 14 8 6 4 4 3 2 1 1 1 1 0
1979 51 27 19 16 13 12 9 6 4 4 3 2 1
1980 35 29 23 19 14 9 8 7 4 4 3 0 0
1981 32 26 20 15 12 9 5 3 3 2 2 0 0
1982 17 15 7 7 6 6 4 4 3 2 2 0 0
1983 31 29 22 20 16 10 11 10 9 7 5 3
1984 52 34 27 23 17 13 10 6 2 2 2
1985 74 64 41 31 20 17 14 13 10 2
1986 42 36 30 22 18 17 16 13 9
1987 56 45 33 28 21 18 13 8
1988 56 46 36 33 26 19 12
1989 53 25 19 14 9 7
1990 56 41 29 19 9
1991 85 59 44 28
1992 58 43 30
1993 77 50
1994 65

Table 2. Number of new cases of infection each year, as diagnosed by ELISA or culture, by age and year of birth as
table 1

age in years︷ ︸︸ ︷
birth year 0 1 2 3 4 5 6 7 8 9 10 11 12

1977 0 0 1 0 0 0 0 0 0 0 0 0 0
1978 0 0 1 1 0 0 1 0 0 0 1 0 0
1979 0 1 1 1 0 1 0 0 0 0 0 1 0
1980 1 3 0 0 0 0 0 0 0 0 0 0 0
1981 1 4 2 0 0 0 1 0 0 0 0 0 0
1982 2 0 0 1 0 0 1 0 0 0 0 0 0
1983 2 2 1 1 0 1 0 0 0 0 0 0
1984 2 1 0 0 4 1 0 0 0 0 0
1985 7 1 0 1 0 0 0 1 1 0
1986 1 3 3 0 0 1 1 0 0
1987 5 3 1 0 0 0 0 0
1988 5 2 1 1 0 1 1
1989 7 0 0 0 0 0
1990 5 3 0 0 0
1991 12 2 0 0
1992 5 1 1
1993 6 0
1994 7

perhaps worth commenting on our choice of model
structure, since there are now a number of other dif-
ferent models (Anderson & Trewhella 1985; Bentil
& Murray 1993; White & Harris 1995b; Smith et al.
1995; Ruxton 1996) in the literature for the spread of
Tb in badgers, and a further set of papers (e.g. Bar-

low 1994; Roberts 1996) attempting to model the su-
perficially similar problem of bovine Tb in possums
in New Zealand and Australia (compared by Barlow
(1995)). We follow the approach of the most strategic
of these models (Anderson & Trewhella 1985); that
is to say we deliberately do not seek to include all
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Table 3. Number of never infected animals present at the start of each year by age and year of birth as table 1

age in years︷ ︸︸ ︷
birth year 0 1 2 3 4 5 6 7 8 9 10 11 12

1977 27 10 4 1 1 0 0 0 0 0 0 0 0
1978 29 14 8 5 3 3 2 1 1 1 1 0 0
1979 51 27 18 14 10 9 5 3 2 2 2 1 0
1980 35 28 21 18 14 9 8 7 4 4 3 0 0
1981 32 25 15 9 7 4 3 1 1 1 1 0 0
1982 17 14 6 6 4 4 2 1 1 0 0 0 0
1983 31 27 19 16 12 8 8 8 7 6 4 2
1984 52 32 25 22 17 11 7 5 2 2 2
1985 74 57 35 27 18 16 13 12 8 2
1986 42 35 27 19 15 15 13 10 7
1987 56 41 27 21 16 15 11 6
1988 56 42 33 30 23 17 10
1989 53 19 15 11 6 5
1990 56 37 23 16 8
1991 85 48 34 19
1992 58 39 26
1993 77 45
1994 65

Table 4. Number of infected animals present during year by age and year of birth as table 1

age in years︷ ︸︸ ︷
birth year 0 1 2 3 4 5 6 7 8 9 10 11 12

1977 0 0 1 1 1 0 0 0 0 0 0 0 0
1978 0 0 1 2 1 1 2 1 0 0 1 1 0
1979 0 1 2 3 3 4 4 3 2 2 1 2 1
1980 1 4 2 1 0 0 0 0 0 0 0 0 0
1981 1 5 7 6 5 5 3 2 2 1 1 0 0
1982 2 1 1 2 2 2 3 3 2 2 2 0 0
1983 2 4 4 5 4 3 3 2 2 1 1 1
1984 2 3 2 1 4 3 3 1 0 0 0
1985 7 8 6 5 2 1 1 2 3 0
1986 1 4 6 3 3 3 4 3 2
1987 5 7 7 7 5 3 2 2
1988 5 6 4 4 3 3 3
1989 7 6 4 3 3 2
1990 5 7 6 3 1
1991 12 13 10 9
1992 5 5 5
1993 6 5
1994 7

potentially relevant factors into our model. Rather,
we seek to elucidate broad principles, not precise nu-
merical predictions, even if the latter were possible.
By contrast, White & Harris (1995a, b), for example,
use a large-scale multiple-parameter model. Such a
model is essential when comparing detailed imple-
mentation plans, but less useful for the development

of understanding about how the key epidemiological
factors interact. We use a model for the spread of Tb
which is deliberately simple; we are able to see clearly
the way in which our assumptions affect our results
and we are able to estimate the simple, aggregated
transmission parameter directly from the data.

In particular, the model we adopt is deterministic
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Figure 1. Force of infection as a function of time in the Woodchester Park data. Number of new conversions per
year per negative animal. Mean force of infection λ = 0.0444 yr−1 with likelihood-based approximate 95% confidence
interval λ ∈ [0.016, 0.076]; slope not significantly different from zero (95% confidence interval [−0.0021, 0.0034]).
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Figure 2. Possible representations of the transmission pa-
rameter β as a function of N . Data points give number
of new cases of infection per susceptible per infected for
each year from 1980 to 1994 within the known-age pop-
ulation described in tables 1–4. ——, best fit for mass
action, β(N) = 0.001 747 × (N/200)−1; – – –, best fit of
the form βαN

−α = 0.001 695×(N/200)−1.478; · · ·, best fit
for pseudo mass action, β(N) = 0.001 745. Fits for β(N)
were obtained by maximizing the log-likelihood summed
over all years, with the log-likelihood for a year with i
new cases in a population of n, including y infectious,
given by [i log(yβ(n)) + (n− i) log(1− yβ(n))].

and not spatially explicit; we discuss the implications
of these assumptions below. It is specified by a hand-
ful of key parameters which we choose with reference
to the Woodchester Park data. We use a fit of our
model to provide a parsimonious description of these
data and to parametrize our analysis of control op-
tions.

Before we describe the particular model used, we
discuss some general questions about the relationship
between transmission intensity, the idea of a thresh-
old density and control strategies.

(a) Threshold densities and transmission
functions

The simplest infection control strategy is one
which eradicates infections in badgers by eradicating
badgers. At the other extreme, removal of a small
number of infected animals reduces the prevalence of
infection by a correspondingly small amount. In prac-
tice, we are more concerned with the third situation,
intermediate between these two extremes: relatively
large-scale removals which are sufficient to reduce the
force of infection substantially and thus partially pro-
tect the remaining badgers from infection. Some of
the simplest epidemiological models predict that this
‘herd immunity’ effect produces a threshold density
of animals below which infection cannot persist. This
relies on assuming that the force of infection, the per
capita rate at which susceptible animals become in-
fected, is proportional to the absolute number of in-
fectious animals present (known as the pseudo-mass
action approximation (De Jong et al. 1995) and sim-
ilar to assuming that animals come into potential in-
fectious contact with most other animals in the popu-
lation). Another common assumption, that the force
of infection is proportional to the fraction of all an-
imals which are infected, is known as the (genuine)
mass action approximation and is applicable when
animals only mix with a small number of possible
contacts. In this second case, there is no threshold
population size. While there are many other possible
choices for the structure of transmission, we will use
these two points as a convenient way of investigating
two points on a spectrum of possibilities (De Jong et
al. 1995). In their large-scale simulation work, White
& Harris (1995b) use an explicit representation of
transmission events; since every animal within a so-
cial group is assumed to contact every other animal
within that group, but only a smaller number of ani-
mals to contact a restricted number of neighbouring
groups, we could interpret their model in the light of
this classification as one which is pseudo-mass action
within groups but mass action between groups, thus
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Table 5. Table of symbols used

symbol meaning

λ force of infection:
incidence rate per susceptible

β(N) transmission coefficient as a function
of population size

N population size
K carrying capacity of region
X number of susceptible animals
Y number of infected animals
DX , DY immigration rate of susceptible and

infected animals
b per capita mortality rate
r(N) discrete per capita birth rate
α additional per capita mortality

due to disease

their results lead to a threshold size for the number
of animals within a group but not one for the number
of groups.

(b) Estimation of transmission intensity

Figure 1 shows the incidence of tuberculosis in
badgers, as a function of year, based on the Woodch-
ester Park data. There is no significant linear trend
in these data.

Thus the force of infection, λ (see table 5 for a list
of model symbols and their meanings), has remained
roughly constant for the last 15 years. On the other
hand, the known-age population size and the number
of known-age positive animals has roughly doubled
(figure 3). This is at first sight more consistent with
assuming that λ is controlled by mass action than as-
suming it is controlled by pseudo-mass action. Some
further evidence for this can be found in figure 2
which shows the relationship between β(N) (defined
as λ/Y ) and N ; pseudo-mass action corresponds to
β(N) being a constant, while mass action assumes
β(N) ∼ 1/N . This plot suggests an even more rapid
decrease than 1/N as N increases.

There are, however, a number of difficulties with
such a conclusion from these data. In particular, it is
sensitive to the assumption that individuals remain
permanently infectious once they have appeared pos-
itive. This has the effect of inflating the number of
infectious animals later in the dataset, when popu-
lation sizes are also larger, and hence reducing β for
large N . The higher estimates for β at small N could
also be due to the effect of infection from other hosts
or from immigrating badgers. A constant but small
background level of such infections would also gener-
ate the pattern seen here. Thus we cannot rule out
pseudo-mass action as the transmission process gen-
erating these data. Further studies into the form of
the transmission process, particularly taking into ac-
count the spatial structure of the population, would
be useful both theoretically and practically.

If the assumption of a threshold density were to be
made (i.e. that transmission is pseudo-mass action),
and its value estimated from observed prevalence
data, the fundamental control question would be:
how do we keep the population below this density?
It doesn’t particularly matter what control mecha-
nism is used; from this viewpoint the question to ask
about a strategy is how we keep the population below
x animals per hectare, rather than what percentage
y should be culled every year, say.

This fundamental question is complicated by a
number of factors; as discussed below, some interven-
tions may act to promote transmission among surviv-
ing animals and so threshold densities may be differ-
ent for different strategies. Even if the simple theory
does not predict the existence of a threshold number
(i.e. if we assume mass action) then control strategies
may well reduce the number of infected animals to a
level at which they may all be removed by stochastic
events.

(c) Model structure

The basic model is strongly reminiscent of that of
Anderson & Trewhella (1985). The major differences
from that model are the assumption of an annual
birth cohort rather than a continuous birth process,
and a choice of transmission function which allows
us to pick from a variety of assumptions including
mass action transmission, pseudo-mass action trans-
mission and perturbation induced intensity of trans-
mission. To ease parameter estimation and model
interpretation, we take the Woodchester Park non-
removal group survey region as the site of our model
population and count the number of susceptible (X)
and infected (Y ) animals within this region, rather
than the formally equivalent density of animals per
hectare. We write

dX
dt

= DX − β(N)XY − bX, (1)

dY
dt

= DY + β(N)XY − bY − αY, (2)

with N = X + Y . Birth is modelled discretely: at
one instant each year the population of susceptibles
is increased by an amount r(N)N . The terms in this
equation can be separated into the demographic and
the epidemiological. Demographically, DX and DY

represent the net immigration of susceptible and in-
fected animals into the area. In the absence of in-
fection, animals are assumed to die at a constant
per capita death rate b. We assume that infection
(i.e. being in the Y compartment) is equivalent to
any past positivity and to infectiousness: there is no
class of latent animals, nor of recovered ones. The
major epidemiological parameter is the transmission
rate β(N); the dependence on population size allows
us to represent different assumptions about transmis-
sion functions and in § 3e we further modify this term
to include effects due to population perturbation. We
assume that infected animals suffer an additional risk
of mortality due to infection, α; our estimates below
show that this is not significantly different from zero
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Figure 3. Total known-age population size, number of negative and positive animals and prevalence of infection over
time, for the Woodchester Park data in tables 1–4.

in the dataset used, so that in some simulations α is
set to zero, but it is included in others to show its
potential significance for epidemiological dynamics.

(d) Parameter estimation

(i) Birth rate

Figure 4 plots the number of cubs in each year’s
data against the total population size in the previ-
ous year’s data. This is the process which we seek to
capture by a birth rate of the form r(N)N . To get an
idea of the form of the function r(N) we plot in fig-
ure 5 the number of cubs per head of total population
against total population.

Previous work (Anderson & Trewhalla 1985), on
data for population numbers alone in Europe, as-
sumed a density dependence of the form r(1 −
(N/K)c) and obtained a good fit with c = 7, corre-
sponding to little effect of density dependence until
the population is near the carrying capacity, K. This
was based on population size alone; effectively only
the difference between birth and death rates can be
deduced in this manner. A least squares fit of the
three parameters r, K and c to the data in figure 5
yielded a best fit c of over 25, implying that if there
is any density dependence it acts very severely but
only at the very highest population levels, so that
by its nature evidence of it cannot be found in the
data. Indeed there appears to be no visual evidence
of any outward convexity at all. Fortunately, we are
interested here in control programmes which will al-
ways act to reduce the population numbers and so
what happens at the very highest population densi-
ties is not crucial to the model; we take c = 1 in the
simulations.

Since K is measured per unit area, it cannot be
directly compared between the three groups; indeed
one might expect the K estimate for all three groups
taken together to be the sum of those for each group
individually, and the data are not inconsistent with
this (table 6). On the other hand, it is reasonable

Table 6. Maximum-likelihood estimates of density depen-
dent birth rate r(N) = r(1−N/K)
(Areas as described in § 2.)

areas r K

1, undisturbed area 0.42 640
2, control area 0.39 160
3, control area 0.47 140
1,2,3 0.35 1050
2,3 0.42 160
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Figure 4. Estimation of effective birth rate. The number
of cubs in each year is plotted against the total population
in the previous year.

in this framework to expect a common value of r
between groups.

(ii) Rates of migration and cross-species transmission

We took DX and DY to be 1 yr−1 in some simula-
tions, corresponding to the conservative assumption
of a steady trickle of infectious and susceptible ani-
mals into the area, so that eradication of infection is
inevitably impossible.

This prudent assumption, that infection will al-
ways be present, means that it is not enough for a
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Figure 5. Estimation of effective per capita birth rate.
The number of cubs in each year, divided by the total
population the previous year, is plotted against the total
population in the previous year.
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Figure 6. Mortality hazard by year. Horizontal axis: age
(yr). Vertical axis: mortality hazard (yr−1). Data from all
years are pooled into age cohorts. For each cohort aged
i, the number of susceptibles at risk of mortality, ni is
taken to be Xi− 1

2Ii, where Xi is the number of negative
animals known to be alive at the beginning of cohort year
i and Ii is the incidence of new cases during the year.
Given the number of deaths di, the hazard hi is then
calculated as di/(ni − 1

2di). Hazard for positive animals
is calculated similarly but using ni = Yi + 1

2Ii, where
Yi is the number of positives alive at the beginning of
the cohort year. Thin lines, negative animals; thick lines,
positive animals; dashed lines, 95% confidence intervals
calculated as hi ± 1.96hi

√
((1− 1

4h
2
i )/di) (Collett 1994).

control strategy to eradicate infection just once in a
badger population: it must also maintain susceptible
numbers below the level at which an epidemic might
occur.

(iii) Mortality rates

Mortality rates for animals with and without in-
fection can be estimated from the Woodchester Park
survey data. Figure 6 shows the annual mortality
hazard for infected and uninfected animals by age.
The assumption of age-independent mortality in the
model is equivalent to the assumption that the an-
nual hazard is constant. The figure also shows a
maximum-likelihood estimate for this hazard for in-
fected and non-infected animals. These hazards are
shown in table 7.

Table 7. Age-independent mortality estimates calculated
from data shown in figure 6
(Annual discrete rates calculated as pooled estimates∑
i di/

∑
i(ni − 1

2di).)

parameter discrete estimate s.e.

disease free mortality, b 0.299 0.012
disease mortality, b+ α 0.344 0.036
relative risk 1.151 0.111

(iv) Transmission parameter

We have estimated the force of infection λ (fig-
ure 3). To use this in our model we need to con-
vert this into a transmission rate β(N)Y using an
assumption about the form of the transmission func-
tion β(N). The mass action (MA) assumption gives
β(N) = βMAλ/Y , while pseudo-mass action (PMA)
says that β(N) = βPMAλN/Y . Figure 2 shows the
force of infection divided by the number of infect-
eds as a function of population size. Note that in
1979 there was a case of infection despite the fact
that none were recorded in the previous years; this
corresponds to an infinitely large value of β for that
year, since we are seeking to estimate the transmis-
sion parameter without taking into account the effect
of migration or other causes of background infection.
This problem is also a factor for the other estimates
for smaller population sizes, but the maximum-
likelihood estimate, because it is weighted to the
years with larger sample sizes, does not differ greatly
when only the later years are used to estimate β. This
approach means that our representation of transmis-
sion is more reliable at larger population sizes and
prevalence levels.

(e) Modelling intervention strategies

This model framework now allows us to model the
effect of different intervention strategies, and specif-
ically of fertility control and lethal control.

We model fertility control by a temporary reduc-
tion in the birth rate by a certain factor, ρ, assumed
to act once only until fertility control is reapplied.
Thus the number of births in a year after fertility
control is not r(N)N but (1− ρ)r(N)N .

Lethal control is modelled by an instantaneous re-
moval of a certain fraction, σ, of the entire popula-
tion. This is assumed in the simulations to take place
annually just before the point at which births occur,
thus reflecting the impact of the year’s losses on birth
rates.

We also wish to consider the possibility that lethal
control may act to promote transmission among sur-
viving animals. There is as yet no quantitative data
to guide us in the construction or calibration of any
functional form to represent this effect. The best that
we can do is to construct a reasonable functional form
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and to examine the effect of a range of parametriza-
tions of this form.

We choose to assume that the transmission term
β depends on the number of ‘recent removals’. We
assume a sigmoid form for this dependency and, if
the number of recent removals is V , we set

β(V ) = β0

[
1 +

V 2

V 2 + (X + Y )2 β1

]
. (3)

This functional form has been chosen so that as dis-
turbance increases, transmission initially increases
slowly from the base value, β0 estimated from the
raw data, then more quickly, and then saturates at
relatively high levels of disturbance. There is no data
at present which we can use to parametrize this func-
tional form. Roughly speaking, the model is designed
so that transmission is doubled when the number of
recently killed animals reaches a fraction 1/

√
β1 of

the recent population.
The number of ‘recent removals’ is modelled by

placing each animal removed into the class V and
then allowing the size of the class to decay in time
with a ‘memory’ rate parameter m. Thus

dV
dt

= −mV. (4)

One further interaction between stress and trans-
mission which has been mooted is that it may be that
females are more prone to transmit infection when
they have recently given birth. Thus fertility control
could have an additional indirect effect by relieving
females of the stress of giving birth and thus reduc-
ing transmission even further. As with the effect of
perturbation, there is no hope at present of capturing
the qualitative impact of this effect but it is possible
to gain some insight by incorporating a caricature of
this effect into the model.

4. RESULTS

Comparison with the Woodchester Park data sug-
gests that precontrol prevalences should be of the or-
der of 15% of the population. Since the birth, death
and transmission parameters are derived from this
dataset, it is not surprising that the model predicts
approximately these prevalence levels (e.g. precontrol
levels in graphs (b) and (c) of figure 7). Nevertheless,
prevalence levels are extremely sensitive to the choice
of transmission parameters and we assumed a range
of different transmission parametrizations.

We investigated a number of simulations explor-
ing the effects of different assumptions and control
strategies. We assumed pseudo-mass action or mass
action, different β values and the alternative strate-
gies of lethal and fertility control. We varied the in-
tensities of the control, which was applied annually
or triennially. In addition, we explored the effects of
applying a more intense initial control effort for ei-
ther a single or five successive years prior to relaxing
the maintenance control operations. We used the re-
sults of these simulations to draw general conclusions
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Figure 7. Result of model simulation for the effect of fer-
tility control as a function of transmission intensity. To-
tal population size is jagged line (due to annual birth
season); smooth line gives number of infectious badgers
multiplied by 10. Thus if the two lines are at the same
level, prevalence of infection is 10%. At the onset of con-
trol, in year 0, fertility is reduced by 70%, followed by
an annual maintenance control of 30%. The transmission
structure is assumed to be mass action and the parameter
values are (all rates expressed per year): DX = DY = 1;
r = 0.42; K = 642; b = 0.26; α = 0.044; β1 = 0 (no
perturbation). Infection transmission coefficient, βMA is
0.001× 200, 0.0015× 200 and 0.0018× 200 in graphs (a),
(b) and (c), respectively.

about the relative effects of fertility and lethal con-
trol which we describe below, illustrated where rel-
evant by sets of simulation runs such as in figure 7.
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Figure 8. Graph (a) as figure 7b but with pseudo-mass
action with transmission coefficient βPMA = 0.0015 and
maintenance fertility control of 30% applied every three
years only. Graph (b) as graph (a) but with lethal control
applied instead of fertility control at the same schedule.
Graph (c) as graph (b) but with perturbation-induced
promotion of transmission following lethal control.

Each shows a range of values of simulations for differ-
ent β values and with different intensities of control
strategy. For each particular combination, the total
population size and the number of infected animals
are shown. Population size appears as a jagged line
because of the annual birth process. The number of
infected animals is scaled by a factor of 10; thus, if the
two lines are at the same level, the prevalence of in-
fection is 10%. Simulations were run for 100 years to
allow equilibrium to be obtained before control was
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Figure 9. Effects of a fertility control schedule (a) of 70%
in the first year and 50% every third year thereafter, con-
trasted with those caused by a schedule (b) of 70% for the
first 5 years, followed by 50% every three years thereafter;
other parameters as figure 8.

applied and implemented with Stella (High Perfor-
mance Systems, Inc.) and Mathematica (Wolfram
Research, Inc.).

5. SENSITIVITY TO OTHER ASSUMPTIONS

The model was explored under a number of differ-
ent structural assumptions: comparing mass action
and pseudo-mass action transmission, for example.
However, the number of possible variants is unlim-
ited; we discuss here the effects we would expect to
see in the presence of some particular complications.

Other workers have included a class of animals in-
cubating infection in their models, typically with a
latent period of a few months, although the empiri-
cal evidence for such a value is scanty (Little et al.
1982); we chose not to include such a class in our
model for the sake of simplicity. For an infection at
an endemic equilibrium, this is not likely to alter our
results very much, since the estimation procedure to
determine β relies on all those animals known to be
infectious at the beginning of the year, of which the
number of incubating animals is likely to be rather
low. However, this assumption would cause problems
if we were to consider modelling strategies based on
selecting animals on the basis of their infection sta-
tus, since this latent class of animals might remain a
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significant reservoir of infection even if all infectious
animals were removed. Similar considerations would
apply to other modifications, such as the inclusion of
a class of animals which become immune to infection.

We have ignored the dynamical effects of seasonal-
ity and stochasticity in transmission; Ruxton (1996)
explores the implications of this neglect for the model
of Bentil & Murray (1993) and shows that the most
significant effect of this is to change the stability of
transient cycles, but further work is clearly needed
in this area.

We have assumed disease-induced mortality to be
small or non-existent. Experience in other pathosys-
tems suggests that even rather low levels of disease
related mortality can have significant effects on host
population levels in some circumstances and more so-
phisticated analyses need to be carried out on these
and similar datasets to investigate the role, if any, of
tuberculosis in controlling badger populations.

The most important simplification we have made,
however, is in our representation of a homogenous
mixing structure. As we have seen, the data are
consistent with a mass action mixing process at all
but the lowest densities. However, the known social
grouping of badger populations means that we need
to consider how well the consequent transmission
structure can be captured in more general situations
and, in particular, following a control operation. If
pockets of infection are isolated then the degree to
which infection persists globally is determined by a
complex interaction between the chronicity of the in-
fection within a particular group, the rate of trans-
mission between neighbouring groups and the rate at
which populations of susceptible badgers are allowed
to recover. Our understanding of the dynamics of
infection in such situations is at best partial. Much
insight can be gained from large-scale numerical sim-
ulations (White & Harris 1995b), but we also need to
extend these simple models (perhaps along the lines
of Barlow (1991)) to encompass these factors without
losing the clarity which is their chief virtue.

6. CONCLUSIONS

Both fertility control and lethal control are capa-
ble of eradicating infection, or in the face of constant
re-exposure risk, at least controlling it at small levels.
This must be so since both are in principle capable
of eradicating the host population. This paper has
confirmed the results of more general studies (Bar-
low 1996) showing that there is a nonlinear relation-
ship between the intensity of control, the reduction
in population size and the number of cases of infec-
tion. In some situations, particularly where external
sources of infection are small and initial prevalences
are high (figure 7c), large reductions in the numbers
infected can be achieved with only moderate reduc-
tions in population numbers (figure 8a). This is much
more marked in the model assuming pseudo-mass ac-
tion, in other words in those settings where disease
transmission is being driven by between group rather
than within group interactions. The mechanism for
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Figure 10. Effects of perturbation. Graphs (a) and (b)
show the results of a lethal control strategy of 70% in the
first year, followed by 10% every three years thereafter,
without ((a) β1 = 0) and with small and large ((b) small
effect β1 = 10, (c) large effect β1 = 100) perturbation-
induced transmission effects; other parameters as figure 8,
except that βMA = 0.001× 200.

this long-term reduction is the same for both fer-
tility control and lethal control: the removal of sus-
ceptibles; if one is in principle capable of keeping a
population low enough to be infection free then, in
the absence of perturbative effects on transmission,
so is the other.

It is necessary to continue either form of control at
regular intervals to maintain a constantly depressed
level of infection in the long term. If control were
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Figure 11. The relationship between fertility induced stress and transmission. Number of all and infected animals in
a population subject to annual fertility reductions of 30%. Curve (a) assumes no relationship between fertility and
transmissions (DX = 0, DY = 0.1, K = 642, r = 0.42, β0 = 0.36 (mass action), b = 0.26, α = 0.044). Curve (b) uses
the same parameter values, except that in the year following a control which reduces fertility to a fraction ρ of its
normal value, transmission is modified by a factor (1−β1(1−ρ)). This run took β1 = 0.2, which is equivalent to mean
transmission (by both males and females) increasing by a factor of five, when fertility is at its maximum, compared
to its intensity when no breeding occurs.

to be stopped, return to precontrol levels of badger
population and prevalence would be expected over a
period of 5–10 yr. Even if infection has been eradi-
cated during the control period, the recovered popu-
lation would continue to be vulnerable to reinfection.
The intensity of initial control does affect the speed
at which the population is reduced to a minimum
infectiousness but not the rate at which it recovers
thereafter (figure 10).

In the short term, and in the unlikely case that
there is no perturbation effect of lethal control, fer-
tility control is less effective in reducing population
density than lethal control since it can only act to re-
move one age cohort per year. It is also less effective
in reducing transmission as it can only ever remove
susceptibles, while lethal control also removes infec-
tious badgers (figure 8). If lethal control does exert a
perturbation effect, these differences are reduced and
might be reversed.

A further perturbative effect might arise from
the reduction in reproductive stress and other be-
havioural changes which could be hypothesized to
act to reduce transmission as the intensity of fertility
control increases. As for the perturbation effects of
lethality control, we have little idea of how to model
this effect. One attempt at such a model is described
in figure 11; it demonstrates a substantial effect at
high transmission levels and frequent interventions
modelled, but of course this depends crucially on the
form and magnitude of the model structure chosen.
Further field work, to give such a structure a more

robust footing, is essential if the likely perturbative
effects are to be judged in this way.

It is against the magnitude of these short-term
disadvantages of fertility control that the potential
problems of lethal control in promoting transmission
need to be judged (figure 10). Much more data are
needed to improve the reliability of the epidemiolog-
ical and demographic parameters and, in particular,
on how they may be affected by population reduc-
tions caused by control operations. Since the propor-
tion of the population that needs to be controlled to
achieve an acceptable and maintained reduction in
the numbers that are infectious is sometimes close
to a level that endangers the viability of the badger
population, any control strategy that also sought to
avoid local badger extinction must be combined with
close monitoring of badger numbers and prevalence
levels in both badgers and cattle. Intensive monitor-
ing may be extremely difficult in practice, but some
continuous reassessment of badger population con-
trol seems essential as long as major gaps in our
understanding of the dynamics of the Tb pathogen
persist.
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